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1. Introduction

Physics analyses at the LHC will benefit if accurate predictions for background and signal

processes become available. Arriving at such predictions often requires next-to-leading or-

der (NLO) QCD computations. This is particularly true for multi-particle processes where

the tree-level scattering amplitudes involve the strong coupling constant at a high power.

In those cases, changing the renormalization scale often leads to O(1) changes in the cross-

section and more accurate predictions can only be obtained with NLO computations [1].

The need for NLO corrections to processes with a vector boson and jets is particularly

pressing. Corrections to vector boson + 1 jet processes and vector boson + 2 jet processes

have been presented in refs. [2, 3, 4, 5] and have been successfully compared with data in

refs. [6, 7]. The processes PP → W/Z +N jets for N ≥ 3 have a special importance. They

constitute the principal background to a number of processes, such as top-pair production

and t-channel single top production. In addition, PP → W/Z + N jet production is an

important source of jets + missing energy events, which is often regarded as a key channel

in the search for physics beyond the Standard Model.
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Techniques for NLO computations in the Standard Model in general and in QCD in

particular are well developed. Traditional methods for NLO calculations are based on

the observation that each Feynman diagram can be represented as a linear combination

of tensor integrals. These tensor integrals can be reduced to scalar four-, three-, two-

and one-point functions by exploiting Lorentz invariance; this procedure is known as the

Passarino-Veltman reduction technique [8].

While recent refinements of this procedure [9, 10, 11, 12, 13, 14, 15] have transformed

it into a powerful computational tool, there are two problems inherent in it. First, the

number of diagrams in a particular process grows faster than N ! where N is the number

of external particles. While processes with five or more external particles are rare at

the Tevatron, the increase in energy and luminosity of the LHC makes consideration of

processes with N > 5 particles phenomenologically mandatory. Second, in the course of

the Passarino-Veltman reduction procedure for high-point functions, there are numerical

instabilities related to the appearance of Gram determinants. The severity of this problem

also increases with the number of external particles, because of the concomitant increase

in the rank of the integrals. These two problems make the application of the Passarino-

Veltman reduction technique to processes with more than five external particles highly

non-trivial [16, 17, 18]. For example, currently there is not a single full process with six

external particles for which NLO QCD corrections are known.

While it may happen that traditional methods of one loop computations are able

to overcome these problems [19, 13], it is important to develop alternative solutions. One

promising approach is the method of generalized unitarity that has been developed by Bern,

Dixon, Dunbar and Kosower [20]. Advances by Britto, Cachazo, Feng [21, 22] allowed the

development of analytic methods for the calculation of the full amplitude, including the

rational part, using recursion relations [23, 24, 25]. A further recent advance by Ossola,

Pittau and Papadopoulos [26] energized attempts to develop numerical procedures based

on unitarity [27, 28, 29].

A new computational scheme based on D-dimensional unitarity has been developed

in Ref. [30]. We will refer to this method as generalized D-dimensional unitarity. In

Refs. [31, 32] the generalized D-dimensional unitarity method was further developed and

was shown to be quite robust. In particular, it was explicitly demonstrated [31] that

generalized D-dimensional unitarity is an algorithm of polynomial complexity where the

evaluation time for one-loop pure gluonic amplitudes with N external particles scales like

N9. Moreover, it was also shown that generalized D-dimensional unitarity can be applied

to processes with massive fermions [32]. The results of these studies strongly suggest that

generalized D-dimensional unitarity is an efficient computational algorithm which is now

in a position to have a phenomenological impact.

The goal of this paper is to make the first steps towards the application of generalized

D-dimensional unitarity to phenomenology. We focus on the computation of virtual one-

loop corrections to one of the important background processes at the Tevatron and LHC

for which the one-loop corrections are still unknown – the production of the W boson in

association with three jets. To this end, we have to consider one-loop corrections to the
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processes

0 → ū + d + g + g + g + W+,

0 → ū + d + Q̄ + Q + g + W+, (1.1)

and may assume, without loss of generality, that the quark Q does not couple to the

W boson. We demonstrate that straightforward application of generalized D-dimensional

unitarity allows us to compute all matrix elements required for the description of these

complicated processes1.

The paper is organized as follows. In the next Section, we summarize the salient

features of generalized D-dimensional unitarity. In Section 3 we discuss the Dirac algebra

and the choices of the polarization vectors in four- and higher-dimensional space-times. In

Section 4 we describe the computation of all primitive amplitudes relevant for the process

0 → ūdgggW+. In Section 5 we focus on the amplitudes with four quarks, a gluon and a

W boson. We conclude in Section 6. Numerical results for a specific phase-space point are

collected in Appendix A.

2. The method

The method of calculation that we employ in this article is generalized D-dimensional

unitarity. The method relies on the observation [30] that one-loop scattering amplitudes

in QCD can be fully reconstructed once tree-level scattering amplitudes are known for

complex on-shell momenta of external particles, in, say, six- and eight-dimensions. The ne-

cessity of knowing tree-level scattering amplitudes in higher-dimensional space-times stems

from the fact that in QCD one-loop amplitudes are divergent and require regularization.

Such regularization is conveniently done by continuing the dimensionality of space-time

from four to 4 − 2ǫ. At the end of the calculation, the limit ǫ → 0 is taken, but ves-

tiges of the regularization survive as particular finite contributions (rational terms) in the

scattering amplitudes. It was pointed out in [30] that the rational part of the amplitude

can be determined by exploiting the dependence of residues of one-loop amplitudes on the

dimensionality of space-time. Since this dependence is linear, it is sufficient to know these

residues in two different space-time dimensions to reconstruct the residue as a function of

D.

For technical reasons, it is convenient to deal with scattering amplitudes where exter-

nal particles are ordered and no permutations are allowed. Such ordering, for example,

automatically fixes the flavors of all internal lines in the highest-level N -point function

that contributes to a particular N -particle ordered amplitude. It is well-known that such

ordering can be achieved without sacrificing gauge-invariance [33, 34, 35]. For tree-level

amplitudes, ordering of external particles appears naturally in color-ordered amplitudes.

For one-loop amplitudes color ordering does not automatically lead to a complete ordering

of all particles in the amplitude. To achieve this, color-ordered amplitudes are further

1In this article, we do not consider loop corrections with massive top quarks. Those contributions can

be obtained along the lines described in [32].
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decomposed into primitive amplitudes [36]. Those primitive amplitudes can be computed

with the help of the color-stripped Feynman rules [36, 37, 38]. Note, however, that for a

given primitive amplitude only color-charged particles are ordered while color-neutral par-

ticles must be inserted in all possible locations to achieve a gauge-invariant result. For our

purposes, this implies that the ordering of the W boson is not fixed and we have to account

for all possible insertions of the W bosons between ū and d quarks in a given primitive

amplitude.

To define a primitive one-loop amplitude, we employ the following set of rules:

• we order all external particles that carry SU(3) color charge;

• we draw a parent diagram with the direction of all fermion lines fixed such that

the loop is always on the right-side of an upwards oriented fermion line. The order

of the external particles is defined by reading the diagram clockwise. This defines

left-handed primitive amplitudes2;

• for an N -point scattering process, in general, the parent must be given by an one-

particle irreducible N -point function, represented by a diagram with N propagators

in the loop. For some orderings it may happen that such a parent does not exist, in

this case we draw the diagram by adding dummy lines;

• we construct all possible cuts of a parent and we throw away all cuts that contain

any dummy line;

• we process each cut as required by generalized D-dimensional unitarity; tree-level

on-shell amplitudes, needed for the computation of residues, are calculated using

color-stripped Feynman rules.

The parent primitive diagrams that are required for the calculation of W +3 jet amplitudes

will be presented later in the paper.

The calculation of residues of primitive amplitudes requires the knowledge of tree-

level amplitudes in six- and eight-dimensional space-time for complex momenta of external

particles. The necessary matrix elements are constructed by employing Berends-Giele re-

currence relations [35]. Recall, that these recurrence relations connect off-shell currents

of different multiplicities and with different particle content. The on-shell scattering am-

plitudes are obtained from the on-shell limits of those currents. For the purposes of this

paper, we need to employ currents with up to six on-shell external particles; a particular

example is a fermionic current with three different fermion flavors and a gluon that con-

tributes to some cuts of the ū + d + W+ + Q + Q̄ + g scattering amplitude. We point

out that, in a numerical program, it is possible to define those currents in a recursive way

treating the number of external gluons as a parameter; currently, this is a necessary, (but

not sufficient) prerequisite for the construction of fully automated computer codes for NLO

QCD computations.

2There are also right-handed primitive amplitudes, where the loop is to the left of an upwards oriented

fermion line. Since left and right primitive amplitudes are related, in this article we only present left

primitive amplitudes [36].
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3. Dirac algebra, spinors and polarization vectors for gauge bosons

3.1 Four-dimensional case

For Dirac matrices it is convenient to use the Weyl representation where the γ-matrices

are given by

γ0 =

(

0 1

1 0

)

, γi =

(

0 −σi

σi 0

)

, γ5 =

(

1 0

0 −1

)

. (3.1)

Consider a massless fermion with momentum p = (E, px, py, pz) and let p+ = E + pz.

Solving the Dirac equation for massless quarks, we find the following solutions

uλ=1(p) =











√
p+

(px + ipy)/
√

p+

0

0











, uλ=−1(p) =











0

0

(px − ipy)/
√

p+

−√
p+











, (3.2)

where λ = ±1 refers to fermion helicity. Because p+ vanishes for E = −pz, the solution for

the fermion moving in the −z direction requires care. Taking the limit, we arrive at

uλ=1(p) =











0√
2E

0

0











, uλ=−1(p) =











0

0√
2E

0











. (3.3)

It is easy to see that in the massless case, the anti-particle solutions of the Dirac equation

are related to the particle solutions so that vλ(p) = u−λ(p).

The polarization vectors for massless gauge bosons in four dimensions are also well

known. We present them here for completeness. For a gluon with momentum

p = E(1, sin θ cos φ, sin θ sin φ, cos θ),

the polarization vector reads

ǫλ(p) =
1√
2

(0, cos θ cos φ − sgn(E)λi sin φ, cos θ sin φ + sgn(E)λi cos φ,− sin θ) . (3.4)

In this paper we consider outgoing gluons; for this reason, all scattering amplitudes are

computed with the complex conjugate vector ǫ∗λ(p).

3.2 D-dimensional case

Generalized D-dimensional unitarity requires the knowledge of tree-level scattering am-

plitudes in higher-dimensional space-time. To compute those amplitudes, we need D-

dimensional polarization vectors for gluons, as well as spinors for fermions in D dimensions.

Polarization vectors for gluons were discussed in detail in [30, 31] and we do not repeat that

discussion here. Weyl fermion spinors in higher-dimensional space-time are constructed as

follows.
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We construct a spinor solution for a fermion with light-like momentum p by using an

auxiliary light-like vector n such that n · p 6= 0

uj(p, n) =
p̂√

2p · nχ
(D)
j (n), ūj(p, n) = χ̄

(D)
j (n)

p̂√
2p · n. (3.5)

Here p̂ = pµΓµ, where the summed index µ runs over D components, (the first four of which

are the 0, x, y, z) and Γµ are the Dirac matrices in D dimensions. The index j specifies the

spinor polarization states. We choose the D-dimensional, p-independent spinors χ
(D)
j (n)

in such a way that

2(D/2−1)
∑

j=1

χ
(D)
j (n) ⊗ χ̄

(D)
j (n) = n̂. (3.6)

In this case, it is easy to see that the uj(p, n) spinors satisfy both the Dirac equation for

massless fermions and the completeness relation

2(D/2−1)
∑

j=1

uj(p, n) ⊗ ūj(p, n) =
p̂n̂p̂

2p · n = p̂. (3.7)

We conclude that uj(p, n) is a valid choice for on-shell fermion states.

The above construction involves an auxiliary vector n and, for this reason is quite

flexible. Having such a flexibility turns out to be important, especially since we have to

construct on-shell spinors for complex momenta. We give a few examples below.

We consider a D-dimensional vector n = (n0, nx, ny, nz, {ni∈(D−4)}), choose n0 =

1/2, nz = 1/2 and set all other components to zero. Then, we need to find the spinors χ

such that

2(D/2−1)
∑

j=1

χ
(D)
j (n) ⊗ χ̄

(D)
j (n) = n̂ =

1

2
(Γ0 − Γz) . (3.8)

Since Γ0,x,y,z are all block-diagonal [39], with “blocks” being 4×4 matrices, a D-dimensional

spinor is constructed by simple iteration of the four-dimensional construction. The four-

dimensional spinors are given by

χ
(4)
1 =











1

0

0

0











, χ
(4)
2 =











0

0

0

−1











. (3.9)

In six dimensions the eight-component spinors are choosen to be

χ
(6)
1 =

(

χ
(4)
1

0

)

, χ
(6)
2 =

(

χ
(4)
2

0

)

, χ
(6)
3 =

(

0

χ
(4)
1

)

, χ
(6)
4 =

(

0

χ
(4)
2

)

. (3.10)

The case D = 8 is a simple generalization of the above construction.
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We now present two alternative procedures to define fermionic spinors which we employ

when the particular choice of the vector n leads to numerical instabilities. This occurs for

the on-shell momentum p = (p0, 0, 0, p0) since (p · n) = 0. To handle this case, we change

the vector n to n = (1/2, 0, 0,−1/2, 0D−4) in the above formulas. However, even this can

be insufficient. Indeed, note that a complex momentum p = (0, px, py, 0) can be light-like.

In this case, we need to choose yet another n. We can take n = (1, 1, 0, 0, 0D−4) and choose

the following four-dimensional spinors

χ
(4)
1 =











1

1

0

0











, χ
(4)
2 =











0

0

1

−1











. (3.11)

The higher-dimensional spinors are obtained from these four-dimensional solutions along

the lines discussed above (see Eq.(3.10)).

4. Processes with two quarks, a W boson and gluons

In this section we consider the one-loop scattering amplitudes 0 → ū+ d +(n− 2) g +W+.

We refer to ū as q̄ and d as q and suppress the label of the W and its decay products

in scattering amplitudes. We note that for a given primitive amplitude the W boson is

inserted in all possible places when the diagram is traversed in a clockwise direction from

q̄ to q.

4.1 Color decomposition of the amplitude

At tree-level, the 0 → q̄ + q + (n − 2) gluons + W scattering amplitude can be written as

Atree
n (1q̄, 2q, 3g, . . . , ng) = gn−2

∑

σ∈Sn−2

(T aσ(3) . . . T aσ(n)) ı̄1
i2

Atree
n (1q̄, 2q;σ(3)g, . . . , σ(n)g) ,

(4.1)

where Sn−2 is the permutation group of (n−2) elements and Atree
n (1q̄, 2q;σ(3)g , . . . , σ(n)g)

are color-ordered amplitudes. For all the amplitudes computed in this paper, we take

the Wūd interaction vertex to be −iγµ(1 − γ5)/2, so that neither electroweak couplings

nor the Cabibbo-Kobayashi-Maskawa matrix elements are included. The W+ decays to

ν(q1) + e+(q2); to account for this, we replace the polarization vector of the outgoing W

by

ǫµ
± = (−1)

ū(q1)γµγ±v(q2)

(q1 + q2)2
, γ± =

1

2
(1 ± γ5). (4.2)

The choice of the polarization vector ǫ− corresponds to the W boson interactions in the

Standard Model. The generators of the SU(3) color group are normalized as Tr(T aT b) = δab

and satisfy the commutation relation

[T a, T b] = −F c
abT

c . (4.3)

This normalization allows us to employ the color-stripped Feynman rules [36, 37, 38] to

calculate color-ordered scattering amplitudes.
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q̄

q

W

g3

gm

gm+1

gn

q̄

q

W

g3

gm

gm+1

gn

Q

Figure 1: Parent diagrams for primitive amplitudes AL
n (1q̄, 3g, ...mg, 2q, m + 1g...ng) and

A
L,[1/2]
n (1q̄, 3g, ...mg, 2q, (m + 1)g...ng). All other parent diagrams that contribute to this primi-

tive are obtained by considering all possible insertions of the W boson without changing relative

ordering of quarks and gluons. The shaded circle stands for dummy lines.

At one-loop, the color decomposition becomes more complicated. Using the color basis

of Ref. [40], the one-loop scattering amplitude can be written as a linear combination of

left primitive amplitudes

A1-loop
n (1q̄, 2q, 3g, . . . , ng) = gn

[ n
∑

p=2

∑

σ∈Sn−2

(T x2T aσ3 · · ·T aσp T x1) ī1
i2

(F aσp+1 · · ·F aσn )x1x2

×(−1)nAL
n(1q̄, σ(p)g, . . . , σ(3)g, 2q, σ(n)g, . . . , σ(p + 1)g) (4.4)

+
nf

Nc

n−1
∑

j=1

∑

σ∈Sn−2/Sn;j

Gr
(q̄q)
n;j (σ3 . . . , σn)A

[1/2]
n;j (1q̄, 2q;σ(3)g, . . . , σ(n)g)

]

,

where for p = 2 the factor (T · · ·T )i2
ī1 → (T x2T x1)i2

ī1 and for p = n the factor (F · · ·F )x1x2 →
δx1x2 . In the second term Sn;j ≡ Zj−1 is the subgroup of Sn−2 that leaves Gr

(q̄q)
n;j invariant.

The color factors read

Gr
(q̄q)
n;1 (3, . . . , n) = Nc(T

a3 · · ·T an) ī1
i2

,

Gr
(q̄q)
n;2 (3; 4, . . . , n) = 0 ,

Gr
(q̄q)
n;j (3, . . . , j + 1; j + 2, . . . , n) = tr(T a3 · · · T aj+1)(T aj+2 · · · T an) ī1

i2
, j = 3, . . . , n − 2,

Gr
(q̄q)
n;n−1(3, . . . , n) = tr(T a3 · · · T an) δ ī1

i2
. (4.5)

Parent diagrams for primitive amplitudes that involve two quarks and gluons are shown in

Fig. 1.

4.2 Numerical results for 0 → q̄qgggW

We have extended the Fortran90 program Rocket [31] to include the computation of primi-

tive amplitudes with quarks, gluons and gauge vector bosons. Rocket computes primitive

amplitudes in the four-dimensional helicity scheme [41, 42]. By default, the computation is

done with double precision and, if a particular phase space point is deemed numerically un-

stable, it is recomputed with quadruple precision using the package developed in Ref. [43].

The scalar integrals are evaluated using the QCDLoop package of ref. [44].
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Note that, since Fortran90 supports recursive functions, implementation of Berends-

Giele recursion for an arbitrary number of gluons is straightforward and indeed has been

done in our program. Therefore, at least in principle, we can compute one-loop amplitudes

for the process ūdW+ + n gluons where n is an arbitrary number, We have checked that

our program produces gauge-invariant one-loop amplitudes and correct 1/ǫ2 and 1/ǫ poles

for n up to ten. For n < 3, we have checked that our results agree with the known one-loop

amplitudes for W + 1 and W + 2 jets [4, 36, 45, 37]. For the description of W + 3 jets, we

require one-loop amplitudes with five external partons and this is what we focus on in the

remainder of this paper.

We present numerical results for the primitive amplitudes with seven external particles

at a particular kinematic point considered in Ref. [46]. The momenta are chosen to be

p1(q̄) =
µ

10
(1, cos α cos β, cos α sin β, sin α) ,

p2(q) =
µ

2
(−1, sin θ, cos θ sin φ, cos θ cos φ) ,

p3(g) =
µ

2
(−1,− sin θ,− cos θ sin φ,− cos θ cos φ) ,

p4(g) =
µ

3
(1, 1, 0, 0) ,

p5(g) =
µ

8
(1, cos β, sin β, 0) ,

p6(e
+) =

µ

12
(1, cos γ cos β, cos γ sinβ, sin γ) ,

p7(ν) = −p1 − p2 − p3 − p4 − p5 − p6 , (4.6)

where µ = 7 GeV and

θ =
π

4
, φ =

π

6
, α =

π

3
, γ =

2π

3
, cos β = − 37

128
. (4.7)

The momenta p6 and p7 are used to define the polarization vector of the W boson, eq.(4.2).

Our results for unrenormalized primitive amplitudes AL
n and A

L,[1/2]
n are summarized in

the Appendix, see Tables 1-4 and Tables 5-6, respectively. We have checked that all primi-

tive amplitudes have correct divergences and are gauge invariant. Moreover, we have tested

the validity of our results for primitive amplitudes by reproducing a diagrammatic compu-

tation of color-ordered amplitudes by taking appropriate linear combinations of primitive

amplitudes. Finally, our program reproduces the results for the leading-color primitive

amplitude AL
5 (1q̄, 2q, 3g, 4g, 5g) computed recently in Ref. [46].

Next, we address the issue of the numerical stability of the computation. As was done

earlier for similar studies of gluon amplitudes, we take care of numerical instabilities by

performing computations with higher precision. Since higher precision slows the compu-

tation, it is desirable to use it only for the phase-space points that suffer from numerical

instabilities. The question we have to address therefore is how to detect numerical insta-

bilities. To study this, we generate 105 random phase-space points using Rambo [47] with

minimal constraints E⊥ > 10−2√s, |η| < 3 and ∆R =
√

∆η2 + ∆φ2 > 0.4 and calculate

the primitive amplitudes for 0 → q̄qgggW with double and quadruple precision. For each

phase-space point, we can check whether or not the double precision computation of a
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Figure 2: Accuracy for AL
5 (1+

q̄ , 2−q , 3−g , 4+
g , 5−g ) (left panel) and for AL

5 (1+
q̄ , 3−g , 4+

g , 5−g , 2−q ) (right

panel) for 105 randomly generated phase-space points. The raw double precision data as well as

the result of numerical improvements are shown (see text for details). The inset shows the same

plots in a linear scale.

primitive amplitude reproduces the analytically known results for double and single poles

in ǫ and if the system of equations is solved with sufficient accuracy for each residue. To

explain the latter test, we remind the reader that each residue is completely parameterized

by a certain number of coefficients. We can check how well these coefficients are computed

by choosing a random loop momentum, calculating the residue and checking how well this

residue is obtained from the previously computed coefficients. We assign a relative error

to each coefficient following the mismatch in this reconstruction. These errors are used to

estimate the total error in the calculation of the primitive amplitude. By requiring that

the relative precision in the poles and in the amplitude is better than 10−3 we find that

around 0.3% of the points are recomputed in quadruple precision.

After unstable points are recomputed with quadruple precision, the numerical insta-

bilities are under control. This is demonstrated in Fig. 2 for two primitive amplitudes

AL
5 (1+

q̄ , 2−q , 3−g , 4+
g , 5−g ) and AL

5 (1+
q̄ , 3−g , 4+

g , 5−g , 2−q ) where we show the number of events as

a function of the relative accuracy ǫ0 defined as the absolute value of the difference be-

tween double and quadruple precision results, divided by the quadruple precision result. We

note, however, that the numerical stability of the amplitudes illustrated in Fig. 2 is generic,

largely independent of the choice of the primitive amplitude and helicities of quarks and

gluons. In fact, the two amplitudes considered in Fig. 2 are on the two sides of the spectrum.

The leading-color amplitude AL
5 (1+

q̄ , 2−q , 3−g , 4+
g , 5−g ) has the minimal number of cuts, since

the W boson can only be inserted in one place, between 1q̄ and 2q. On the contrary, the

amplitude AL
5 (1+

q̄ , 3−g , 4+
g , 5−g , 2−q ) has the maximal number of cuts since the W boson can

be inserted in four different places. Thus, among all primitive amplitudes with two quarks

and three gluons, maximal computational effort is required for AL
5 (1+

q̄ , 3−g , 4+
g , 5−g , 2−q ) so

that the issues of numerical stability may be expected to be worst in this case.

We expect that further optimization of the procedure for identifying unstable points
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may be required to arrive at an optimal compromise between numerical accuracy and speed

of the code. For instance, with an arbitrary precision package such as that of ref. [43],

one can design a procedure where instead of using fixed quadruple precision for unstable

points, the number of digits in the higher precision calculation is established according to

how unstable the point is. We plan to study these issues in the future.

Finally, we remark on the CPU-time required for the evaluation of one-loop amplitudes.

We find that it takes about 45-50 msec to evaluate the leading-color primitive amplitude

AL
5 (1q̄, 2q, 3g, 4g, 5g) on a computer with 2.33 GHz Pentium Xeon processor using the intel

fortran compiler. This is comparable to the evaluation times for six-gluon primitive am-

plitudes [31]. For more complicated primitive amplitudes, the number of cuts increases

and the evaluation times scale accordingly. For example, for AL
5 (1q̄, 3g, 4g, 5g, 2q), the case

with the maximal number of cuts, it takes about 160 msec to compute a single primitive

amplitude.

5. Processes with two quark pairs, a W boson and a gluon

5.1 Color decomposition of the amplitude

We now turn to processes with two quark pairs, the W boson and a gluon, 0 → ū + d +

Q̄ + Q + W + g. We will again refer to ū as q̄ and to d as q. To construct color-ordered

primitive amplitudes, we assume that the W boson can not couple to the quark Q. The

color decomposition of the four-quark and one-gluon amplitude at tree-level reads

Btree(1q̄, 2q, 3Q̄, 4Q, 5g) = g3

[

(T a5) ı̄1
i4

δ ı̄3
i2

Btree
7;1 +

1

Nc
(T a5) ı̄1

i2
δ ı̄3
i4

Btree
7;2

+ (T a5) ı̄3
i2

δ ı̄1
i4

Btree
7;3 +

1

Nc
(T a5) ı̄3

i4
δ ı̄1
i2

Btree
7;4

]

, (5.1)

in an obvious notation where a5 is the color index of the produced gluon. The color

decomposition of the four-quark and one-gluon amplitude at one loop reads

B1-loop(1q̄, 2q, 3Q̄, 4Q, 5g) = g5

[

Nc(T
a5) ı̄1

i4
δ ı̄3
i2

B7;1 + (T a5) ı̄1
i2

δ ı̄3
i4

B7;2

+ Nc(T
a5) ı̄3

i2
δ ı̄1
i4

B7;3 + (T a5) ı̄3
i4

δ ı̄1
i2

B7;4

]

. (5.2)

Each of these one-loop color-ordered amplitudes can be further written as

B7;i = B
[1]
7;i +

nf

Nc
B

[1/2]
7;i , i = 1, 2, 3, 4 , (5.3)

to separate the diagrams with a closed fermion loop from the other ones. The amplitudes

B
[1]
7;i and B

[1/2]
7;i can be written as linear combinations of primitive amplitudes. Those

primitive amplitudes are shown in Figs. 3 and 4.
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q̄ q

Q Q̄

Q′ Q′

W

Figure 3: Prototype parent diagram for primitive amplitudes with four quarks, a W boson and

a gluon which contain a closed fermion loop. The gluon can be inserted in four possible ways into

the prototype graph, leading to four primitive amplitudes. Note that the W only couples to q. The

solid blobs denote the dummy lines introduced in section 2.

For the amplitudes with an additional closed fermion loop we find

B
[1/2]
7;1 = −A

[1/2]
L (1q̄, 5g, 4Q, 3Q̄, 2q),

B
[1/2]
7;2 = −A

[1/2]
L (1q̄, 4Q, 3Q̄, 2q, 5g),

B
[1/2]
7;3 = −A

[1/2]
L (1q̄, 4Q, 3Q̄, 5g, 2q),

B
[1/2]
7;4 = −A

[1/2]
L (1q̄, 4Q, 5g, 3Q̄, 2q). (5.4)

The three classes of primitive amplitudes that we need to consider for four-quark

processes without closed fermion loops are shown in Fig. 4,

B
[1]
7;i = B

[1],a
7;i + B

[1],b
7;i + B

[1],c
7;i . (5.5)

Amplitudes from each class are written as linear combinations of primitives amplitudes.

q̄ Q

q Q̄

q Q
W

a)

q̄ q

Q Q̄

q q
W

b)

q̄ q

Q Q̄

Q Q

W

c)

Figure 4: Prototype parent diagrams for primitive amplitudes with four quarks, a W boson and

a gluon for classes a, b and c. The gluon can be inserted in four possible ways into any of the

prototype graphs, leading to four primitive amplitudes in each case. For the diagrams in class b,

all possible insertions of a W boson to a given parent primitive should be considered; note that the

W only couples to q. The solid blobs denote the dummy lines introduced in section 2.
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For class a, we find

B
[1],a
7;1 =

(

1 − 1

N2
c

)

A
[1],a
L

(

1q̄, 2q, 3Q̄, 4Q, 5g

)

− 1

N2
c

(

−A
[1],a
L

(

1q̄, 5g, 2q, 3Q̄, 4Q

)

(5.6)

−A
[1],a
L

(

1q̄, 5g, 2q, 4Q, 3Q̄

)

− A
[1],a
L

(

1q̄, 2q, 5g, 3Q̄, 4Q

)

− A
[1],a
L

(

1q̄, 2q, 5g, 4Q, 3Q̄

)

−A
[1],a
L

(

1q̄, 2q, 3Q̄, 5g, 4Q

)

− A
[1],a
L

(

1q̄, 2q, 4Q, 5g, 3Q̄

)

+ A
[1],a
L

(

1q̄, 2q, 4Q, 3Q̄, 5g

)

)

,

B
[1],a
7;2 = +A

[1],a
L

(

1q̄, 2q, 5g, 4Q, 3Q̄

)

− A
[1],a
L

(

1q̄, 2q, 4Q, 5g, 3Q̄

)

+ A
[1],a
L

(

1q̄, 2q, 4Q, 3Q̄, 5g

)

− 1

N2
c

(

A
[1],a
L

(

1q̄, 5g, 2q, 3Q̄, 4Q

)

+ A
[1],a
L

(

1q̄, 5g, 2q, 4Q, 3Q̄

)

)

, (5.7)

B
[1],a
7;3 =

(

1 − 1

N2
c

)

A
[1],a
L

(

1q̄, 2q, 5g, 3Q̄, 4Q

)

− 1

N2
c

(

−A
[1],a
L

(

1q̄, 5g, 2q, 3Q̄, 4Q

)

(5.8)

−A
[1],a
L

(

1q̄, 5g, 2q, 4Q, 3Q̄

)

− A
[1],a
L

(

1q̄, 2q, 3Q̄, 5g, 4Q

)

− A
[1],a
L

(

1q̄, 2q, 4Q, 5g, 3Q̄

)

−A
[1],a
L

(

1q̄, 2q, 3Q̄, 4Q, 5g

)

− A
[1],a
L

(

1q̄, 2q, 4Q, 3Q̄, 5g

)

+ A
[1],a
L

(

1q̄, 2q, 5g, 4Q, 3Q̄

)

)

,

B
[1],a
7;4 = −A

[1],a
L

(

1q̄, 5g, 2q, 4Q, 3Q̄

)

− A
[1],a
L

(

1q̄, 2q, 5g, 4Q, 3Q̄

)

− A
[1],a
L

(

1q̄, 2q, 4Q, 3Q̄, 5g

)

− 1

N2
c

(

A
[1],a
L

(

1q̄, 2q, 4Q, 5g, 3Q̄

)

+ A
[1],a
L

(

1q̄, 2q, 3Q̄, 5g, 4Q

)

)

. (5.9)

Note that in this formula there are amplitudes where fermions and anti-fermions alternate

(q̄qQ̄Q) and amplitudes where this is not the case (q̄qQQ̄). The latter can be reduced to

the former using the following C-parity relation

A
[1],a
L

(

1q̄, . . . , 2q, . . . , 4
λ4
Q , . . . , 3λ3

Q̄
, . . .

)

= (−1)n+1A
[1],a
L

(

1q̄, . . . , 2q, . . . 4
λ4

Q̄
, . . . , 3λ3

Q , . . .
)

.

(5.10)

Here n is the number of external gluons sandwiched between the Q̄ and Q spinors.

For classes b and c we obtain

B
[1],b
7;1 =

1

N2
c

A
[1],b
L

(

1q̄, 5g, 4Q, 3Q̄, 2q

)

,

B
[1],b
7;2 = − 1

N2
c

(

A
[1],b
L

(

1q̄, 5g, 4Q, 3Q̄, 2q

)

+ A
[1],b
L

(

1q̄, 4Q, 5g, 3Q̄, 2q

)

+ A
[1],b
L

(

1q̄, 4Q, 3Q̄, 5g, 2q

)

)

,

B
[1],b
7;3 =

1

N2
c

A
[1],b
L

(

1q̄, 4Q, 3Q̄, 5g, 2q

)

,

B
[1],b
7;4 = −A

[1],b
L

(

1q̄, 5g, 4Q, 3Q̄, 2q

)

− A
[1],b
L

(

1q̄, 4Q, 3Q̄, 5g, 2q

)

− A
[1],b
L

(

1q̄, 4Q, 3Q̄, 2q, 5g

)

−
(

1 − 1

N2
c

)

A
[1],b
L

(

1q̄, 4Q, 5g, 3Q̄, 2q

)

. (5.11)

B
[1],c
7;1 =

1

N2
c

A
[1],c
L

(

1q̄, 5g, 4Q, 3Q̄, 2q

)

,

B
[1],c
7;2 = −A

[1],c
L

(

1q̄, 5g, 4Q, 3Q̄, 2q

)

− A
[1],c
L

(

1q̄, 4Q, 5g, 3Q̄, 2q

)

− A
[1],c
L

(

1q̄, 4Q, 3Q̄, 5g, 2q

)

−
(

1 − 1

N2
c

)

A
[1],c
L

(

1q̄, 4Q, 3Q̄, 2q, 5g

)

,
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Figure 5: Accuracy for A
[1],a
L (1+

q̄ , 2−q , 5+
g , 3−Q, 4+

Q̄
) amplitude for 105 randomly generated phase-

space points. The raw double precision data as well as the result of numerical improvements are

shown. The inset shows the same plots in a linear scale.

B
[1],c
7;3 =

1

N2
c

A
[1],c
L

(

1q̄, 4Q, 3Q̄, 5g, 2q

)

, (5.12)

B
[1],c
7;4 = − 1

N2
c

(

A
[1],c
L

(

1q̄, 5g, 4Q, 3Q̄, 2q

)

+ A
[1],c
L

(

1q̄, 4Q, 3Q̄, 5g, 2q

)

+ A
[1],c
L

(

1q̄, 4Q, 3Q̄, 2q, 5g

)

)

,

5.2 Numerical results for 0 → q̄qQ̄QgW amplitudes

We now present numerical results for 0 → q̄qQ̄QgW amplitudes. We use the kinematic

point in Eq. (4.6), where the momentum p3 is the momentum of Q̄ and the momentum

p4 refers to Q. The results of the calculation are given in Tables 7-11. The results for

primitive amplitudes given in these Tables are sufficient to obtain numerical results for

the color-ordered amplitudes B7;i, i = 1, . . . 4 using the equations given in the previous

subsection. In fact, we have checked our results for the primitive amplitudes by calculating

the color-ordered amplitudes B7;i, i = 1, . . . , 4 diagrammatically and verifying that linear

combinations of the primitive amplitudes computed with Rocket reproduce results of the

diagrammatic computation. The numerical stability of a four-quark amplitude is illustrated

in Fig. 5. It is very similar to the numerical stability of the amplitudes with two quarks

and three gluons discussed earlier in detail and to other four-quark amplitudes.

6. Conclusions

In this paper we have shown that a straightforward application of the generalized D-

dimensional unitarity method proposed in ref. [30] allows us to compute all one-loop scat-

tering amplitudes required to describe the production of a W boson in association with
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three jets at hadron colliders. We observe satisfactory performance in terms of numerical

stability and required run times. We feel confident that the results of this paper provide

a solid foundation for computing the one-loop virtual corrections to the production of the

W + 3 jets in hadron collisions.

On a more general side, the current version of Rocket computes one-loop amplitudes for

processes 0 → n gluons, 0 → q̄q+n gluons, 0 → q̄qW +n gluons and 0 → q̄qQ̄QW+1 gluon.

It is straightforward to extend the program to include similar processes with the Z boson

and processes with massive quarks 0 → t̄t+n gluons. This list is a testimony to the power

of the method and indicates that the development of automated programs for one-loop

calculations may finally be within reach.
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A. Numerical results

In this Appendix we present the numerical results for various primitive amplitudes that

we employ for the computation of W +3 jet processes. Numerical results are presented for

the phase-space point given in Eq.(4.6) for various helicities of the external particles. For

convenience, we present the results for the ratio of a one-loop primitive amplitude and the

corresponding primitive tree-level amplitude defined as 3

r
[j]
L (1, 2, 3, 4, 5, 6, 7) =

1

cΓ

A
[j]
L (1, 2, 3, 4, 5, 6, 7)

Atree(1, 2, 3, 4, 5, 6, 7)
, cΓ =

Γ(1 + ǫ)Γ(1 − ǫ)2

(4π)2−ǫΓ(1 − 2ǫ)
, (A.1)

where in this appendix we always indicate explicitly the dependence on the lepton momenta

from the W decay.

A.1 Numerical results for 0 → q̄qgggW amplitudes

Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 2−q 3+

g 4+
g 5+

g 6+
l̄

7−l ) −0.006873 + i 0.011728

r
[1]
L (1+

q̄ 2−q 3+
g 4+

g 5+
g 6+

l̄
7−l ) −4.00000 −10.439578 − i 9.424778 5.993700 − i 19.646278

Atree(1+
q̄ 2−q 3+

g 4+
g 5−g 6+

l̄
7−l ) 0.010248 − i 0.007726

r
[1]
L (1+

q̄ 2−q 3+
g 4+

g 5−g 6+
l̄

7−l ) −4.00000 −10.439578 − i 9.424778 −14.377555 − i 37.219716

Atree(1+
q̄ 2−q 3−g 4+

g 5+
g 6+

l̄
7−l ) 0.495774 − i 1.274796

r
[1]
L (1+

q̄ 2−q 3−g 4+
g 5+

g 6+
l̄

7−l ) −4.00000 −10.439578 − i 9.424778 −1.039489 − i 30.210418

Atree(1+
q̄ 2−q 3−g 4+

g 5−g 6+
l̄

7−l ) −0.294256 − i 0.223277

r
[1]
L (1+

q̄ 2−q 3−g 4+
g 5−g 6+

l̄
7−l ) −4.00000 −10.439578 − i 9.424778 −1.444709 − i 26.101951

Table 1: The primitive tree-level amplitude Atree(1q̄, 2q, 3g, 4g, 5g, 6l̄, 7l) and the ratio

r
[1]
L (1q̄, 2q, 3g, 4g, 5g, 6l̄, 7l) of a primitive one-loop amplitude to the primitive tree-level amplitudes

for various helicities.

3Note that Atree(1, 2, 3, 4, 5, 6, 7) denote here primitive tree-level amplitudes, as opposed to the color

ordered amplitudes Atree
n (1q̄ , 2q ; σ(3)g, . . . , σ(n)g) appearing e.g. eq. (4.1), where the quarks are separated

by a semicolon from the gluons.
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Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 3+

g 2−q 4+
g 5+

g 6+
l̄

7−l ) −0.005446 + i 0.009804

r
[1]
L (1+

q̄ 3+
g 2−q 4+

g 5+
g 6+

l̄
7−l ) −3.00000 −8.676830 − i 6.283185 −1.423339 − i 14.443863

Atree(1+
q̄ 3+

g 2−q 4+
g 5−g 6+

l̄
7−l ) 0.000364 + i 0.004550

r
[1]
L (1+

q̄ 3+
g 2−q 4+

g 5−g 6+
l̄

7−l ) −3.00000 −8.676830 − i 6.283185 −11.406265 − i 16.485295

Atree(1+
q̄ 3−g 2−q 4+

g 5+
g 6+

l̄
7−l ) 0.341643 − i 0.310960

r
[1]
L (1+

q̄ 3−g 2−q 4+
g 5+

g 6+
l̄

7−l ) −3.00000 −8.676830 − i 6.283185 −5.430180 − i 21.180247

Atree(1+
q̄ 3−g 2−q 4+

g 5−g 6+
l̄

7−l ) 0.024966 − i 0.156703

r
[1]
L (1+

q̄ 3−g 2−q 4+
g 5−g 6+

l̄
7−l ) −3.00000 −8.676830 − i 6.283185 −4.868668 − i 21.036597

Table 2: The primitive tree-level amplitude Atree(1q̄, 3g, 2q, 4g, 5g, 6l̄, 7l) and the ratio

r
[1]
L (1q̄, 3g, 2q, 4g, 5g, 6l̄, 7l) of a primitive one-loop amplitude to tree-level primitive amplitude for

various helicities.

Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 3+

g 4+
g 2−q 5+

g 6+
l̄

7−l ) −0.005563 − i 0.030746

r
[1]
L (1+

q̄ 3+
g 4+

g 2−q 5+
g 6+

l̄
7−l ) −2.00000 −7.835662 − i 3.141593 13.662096 − i 25.637707

Atree(1+
q̄ 3+

g 4+
g 2−q 5−g 6+

l̄
7−l ) 0.022677 + i 0.085524

r
[1]
L (1+

q̄ 3+
g 4+

g 2−q 5−g 6+
l̄

7−l ) −2.00000 −7.835662 − i 3.141593 −9.177581 − i 16.265480

Atree(1+
q̄ 3−g 4+

g 2−q 5+
g 6+

l̄
7−l ) −0.098988 + i 1.958409

r
[1]
L (1+

q̄ 3−g 4+
g 2−q 5+

g 6+
l̄

7−l ) −2.00000 −7.835662 − i 3.141593 −12.140461 − i 15.924761

Atree(1+
q̄ 3−g 4+

g 2−q 5−g 6+
l̄

7−l ) −0.283565 + i 0.841833

r
[1]
L (1+

q̄ 3−g 4+
g 2−q 5−g 6+

l̄
7−l ) −2.00000 −7.835662 − i 3.141593 −13.465828 − i 13.730719

Table 3: The primitive tree-level amplitude Atree(1q̄, 3g, 4g, 2q, 5g, 6l̄, 7l) and the ratio

r
[1]
L (1q̄, 3g, 4g, 2q, 5g, 6l̄, 7l) of a primitive one-loop amplitude to the primitive tree-level amplitude

for various helicities.
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Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 3+

g 4+
g 5+

g 2−q 6+
l̄

7−l ) 0.017883 + i 0.009214

r
[1]
L (1+

q̄ 3+
g 4+

g 5+
g 2−q 6+

l̄
7−l ) −1.00000 −3.334232 − i 0.000000 11.973924 − i 8.033958

Atree(1+
q̄ 3+

g 4+
g 5−g 2−q 6+

l̄
7−l ) −0.033289 − i 0.082348

r
[1]
L (1+

q̄ 3+
g 4+

g 5−g 2−q 6+
l̄

7−l ) −1.00000 −3.334232 + i 0.000000 −1.783190 + i 1.552944

Atree(1+
q̄ 3−g 4+

g 5+
g 2−q 6+

l̄
7−l ) −0.738428 − i 0.372652

r
[1]
L (1+

q̄ 3−g 4+
g 5+

g 2−q 6+
l̄

7−l ) −1.00000 −3.334232 − i 0.000000 −5.654597 + i 0.276608

Atree(1+
q̄ 3−g 4+

g 5−g 2−q 6+
l̄

7−l ) 0.552856 − i 0.461853

r
[1]
L (1+

q̄ 3−g 4+
g 5−g 2−q 6+

l̄
7−l ) −1.00000 −3.334232 + i 0.000000 −6.461431 + i 1.451815

Table 4: The primitive tree-level amplitude Atree(1q̄, 3g, 4g, 5g, 2q, 6l̄, 7l) and the ratio

r
[1]
L (1q̄, 3g, 4g, 5g, 2q, 6l̄, 7l) of a primitive one-loop amplitude to the primitive tree-level amplitude

for various helicities.

Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 2−q 3+

g 4+
g 5+

g 6+
l̄

7−l ) −0.006873 + i 0.011728

r
[1/2]
L (1+

q̄ 2−q 3+
g 4+

g 5+
g 6+

l̄
7−l ) 0.00000 0.000000 − i 0.000000 −6.001512 − i 26.601839

Atree(1+
q̄ 2−q 3+

g 4+
g 5−g 6+

l̄
7−l ) 0.010248 − i 0.007726

r
[1/2]
L (1+

q̄ 2−q 3+
g 4+

g 5−g 6+
l̄

7−l ) 0.00000 0.000000 − i 0.000000 7.227836 − i 4.090839

Atree(1+
q̄ 2−q 3−g 4+

g 5+
g 6+

l̄
7−l ) 0.495774 − i 1.274796

r
[1/2]
L (1+

q̄ 2−q 3−g 4+
g 5+

g 6+
l̄

7−l ) 0.00000 0.000000 + i 0.000000 0.096288 − i 0.114398

Atree(1+
q̄ 2−q 3−g 4+

g 5−g 6+
l̄

7−l ) −0.294256 − i 0.223277

r
[1/2]
L (1+

q̄ 2−q 3−g 4+
g 5−g 6+

l̄
7−l ) 0.00000 0.000000 + i 0.000000 0.164410 − i 0.134601

Table 5: The primitive tree-level amplitude Atree(1q̄, 2q, 3g, 4g, 5g, 6l̄, 7l) and the ratio

r
[1/2]
L (1q̄, 2q, 3g, 4g, 5g, 6l̄, 7l) of a primitive one-loop amplitude to the primitive tree-level amplitude

for various helicities.
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Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 3+

g 2−q 4+
g 5+

g 6+
l̄

7−l ) −0.005446 + i 0.009804

r
[1/2]
L (1+

q̄ 3+
g 2−q 4+

g 5+
g 6+

l̄
7−l ) 0.00000 0.000000 − i 0.000000 −0.127241 − i 1.316987

Atree(1+
q̄ 3+

g 2−q 4+
g 5−g 6+

l̄
7−l ) 0.000364 + i 0.004550

r
[1/2]
L (1+

q̄ 3+
g 2−q 4+

g 5−g 6+
l̄

7−l ) 0.00000 0.000000 + i 0.000000 0.000000 + i 0.000000

Atree(1+
q̄ 3−g 2−q 4+

g 5+
g 6+

l̄
7−l ) 0.341643 − i 0.310960

r
[1/2]
L (1+

q̄ 3−g 2−q 4+
g 5+

g 6+
l̄

7−l ) 0.00000 0.000000 + i 0.000000 −0.020783 − i 0.001593

Atree(1+
q̄ 3−g 2−q 4+

g 5−g 6+
l̄

7−l ) 0.024966 − i 0.156703

r
[1/2]
L (1+

q̄ 3−g 2−q 4+
g 5−g 6+

l̄
7−l ) 0.00000 0.000000 − i 0.000000 0.000000 − i 0.000000

Table 6: The primitive tree-level amplitude Atree(1q̄, 3g, 2q, 4g, 5g, 6l̄, 7l) and the ratio

r
[1/2]
L (1q̄, 3g, 2q, 4g, 5g, 6l̄, 7l) of the primitive one-loop amplitude to the primitive tree-level am-

plitude for various helicities.
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A.2 Numerical results for 0 → q̄qQ̄QgW amplitudes

Numerical results for amplitudes with two quark pairs, a W boson and a gluon are presented

in Tables below.

Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 5+

g 2−q 3−
Q̄

4+
Q 6+

l̄
7−l ) −1.347977 − i 0.593626

r
[1],a
L (1+

q̄ 5+
g 2−q 3−

Q̄
4+

Q 6+
l̄

7−l ) −2.00000 −1.906388 − i 6.283185 12.513239 − i 16.727811

Atree(1+
q̄ 5−g 2−q 3−

Q̄
4+

Q 6+
l̄

7−l ) −0.570749 − i 0.316836

r
[1],a
L (1+

q̄ 5−g 2−q 3−
Q̄

4+
Q 6+

l̄
7−l ) −2.00000 −1.906388 − i 6.283185 12.452841 − i 14.482266

Atree(1+
q̄ 2−q 5+

g 3−
Q̄

4+
Q 6+

l̄
7−l ) 0.734834 − i 0.360895

r
[1],a
L (1+

q̄ 2−q 5+
g 3−

Q̄
4+

Q 6+
l̄

7−l ) −3.00000 −6.083408 − i 3.141593 9.466663 − i 4.461718

Atree(1+
q̄ 2−q 5−g 3−

Q̄
4+

Q 6+
l̄

7−l ) 0.421057 + i 0.463392

r
[1],a
L (1+

q̄ 2−q 5−g 3−
Q̄

4+
Q 6+

l̄
7−l ) −3.00000 −6.083408 − i 3.141593 7.337316 − i 3.094966

Atree(1+
q̄ 2−q 3−

Q̄
5+

g 4+
Q 6+

l̄
7−l ) −0.288607 − i 0.043034

r
[1],a
L (1+

q̄ 2−q 3−
Q̄

5+
g 4+

Q 6+
l̄

7−l ) −2.00000 −1.906388 − i 6.283185 14.470591 − i 16.520704

Atree(1+
q̄ 2−q 3−

Q̄
5−g 4+

Q 6+
l̄

7−l ) −0.148841 + i 0.001847

r
[1],a
L (1+

q̄ 2−q 3−
Q̄

5−g 4+
Q 6+

l̄
7−l ) −2.00000 −1.906388 − i 6.283185 10.478262 − i 16.315474

Atree(1+
q̄ 2−q 3−

Q̄
4+

Q 5+
g 6+

l̄
7−l ) 0.901749 + i 0.997556

r
[1],a
L (1+

q̄ 2−q 3−
Q̄

4+
Q 5+

g 6+
l̄

7−l ) −3.00000 −5.946351 − i 9.424778 10.012255 − i 29.539947

Atree(1+
q̄ 2−q 3−

Q̄
4+

Q 5−g 6+
l̄

7−l ) 0.298533 − i 0.147741

r
[1],a
L (1+

q̄ 2−q 3−
Q̄

4+
Q 5−g 6+

l̄
7−l ) −3.00000 −5.946351 − i 9.424778 9.462997 − i 25.465941

Table 7: The primitive tree-level four-quark amplitudes Atree and the ratio r
[1],a
L of the one-loop

class a primitive amplitude to the corresponding primitive tree-level amplitude for various helicities.
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Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 5+

g 2−q 4+
Q̄

3−Q 6+
l̄

7−l ) −1.347977 − i 0.593626

r
[1],a
L (1+

q̄ 5+
g 2−q 4+

Q̄
3−Q 6+

l̄
7−l ) −2.00000 −3.109446 + i 0.000000 7.650907 − i 1.630983

Atree(1+
q̄ 5−g 2−q 4+

Q̄
3−Q 6+

l̄
7−l ) −0.570749 − i 0.316836

r
[1],a
L (1+

q̄ 5−g 2−q 4+
Q̄

3−Q 6+
l̄

7−l ) −2.00000 −3.109446 + i 0.000000 7.388565 + i 2.000057

Atree(1+
q̄ 2−q 5+

g 4+
Q̄

3−Q 6+
l̄

7−l ) 0.446227 − i 0.403929

r
[1],a
L (1+

q̄ 2−q 5+
g 4+

Q̄
3−Q 6+

l̄
7−l ) −3.00000 −6.730261 − i 3.141593 8.835307 − i 10.218599

Atree(1+
q̄ 2−q 5−g 4+

Q̄
3−Q 6+

l̄
7−l ) 0.272217 + i 0.464577

r
[1],a
L (1+

q̄ 2−q 5−g 4+
Q̄

3−Q 6+
l̄

7−l ) −3.00000 −6.730261 − i 3.141593 2.417473 − i 12.686072

Atree(1+
q̄ 2−q 4+

Q̄
5+

g 3−Q 6+
l̄

7−l ) 0.288607 + i 0.043034

r
[1],a
L (1+

q̄ 2−q 4+
Q̄

5+
g 3−Q 6+

l̄
7−l ) −2.00000 −3.109446 + i 0.000000 11.636607 + i 2.670357

Atree(1+
q̄ 2−q 4+

Q̄
5−g 3−Q 6+

l̄
7−l ) 0.148841 − i 0.001185

r
[1],a
L (1+

q̄ 2−q 4+
Q̄

5−g 3−Q 6+
l̄

7−l ) −2.00000 −3.109446 + i 0.000000 3.098383 − i 0.972210

Atree(1+
q̄ 2−q 4+

Q̄
3−Q 5+

g 6+
l̄

7−l ) 0.613143 + i 0.954522

r
[1],a
L (1+

q̄ 2−q 4+
Q̄

3−Q 5+
g 6+

l̄
7−l ) −3.00000 −6.502556 − i 3.141593 9.563123 − i 12.742650

Atree(1+
q̄ 2−q 4+

Q̄
3−Q 5−g 6+

l̄
7−l ) 0.149692 − i 0.146556

r
[1],a
L (1+

q̄ 2−q 4+
Q̄

3−Q 5−g 6+
l̄

7−l ) −3.00000 −6.502556 − i 3.141593 7.832425 − i 8.905177

Table 8: The primitive tree-level four-quark amplitudes Atree and the ratio r
[1],a
L of the primitive

one-loop class a amplitude to the corresponding primitive tree-level amplitude for various helicities.

Note the different ordering of the quarks Q and Q̄ compared to Table 7.
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Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 5+

g 4+
Q 3−

Q̄
2−q 6+

l̄
7−l ) −0.901749 − i 0.997556

r
[1],b
L (1+

q̄ 5+
g 4+

Q 3−
Q̄

2−q 6+
l̄

7−l ) −1.00000 −3.334232 + i 0.000000 −8.027321 − i 0.968722

Atree(1+
q̄ 5−g 4+

Q 3−
Q̄

2−q 6+
l̄

7−l ) −0.298533 + i 0.147741

r
[1],b
L (1+

q̄ 5−g 4+
Q 3−

Q̄
2−q 6+

l̄
7−l ) −1.00000 −3.334232 + i 0.000000 −4.397007 − i 3.109084

Atree(1+
q̄ 4+

Q 5+
g 3−

Q̄
2−q 6+

l̄
7−l ) 0.288607 + i 0.043034

r
[1],b
L (1+

q̄ 4+
Q 5+

g 3−
Q̄

2−q 6+
l̄

7−l ) −1.00000 −3.334232 + i 0.000000 −5.997531 − i 0.856042

Atree(1+
q̄ 4+

Q 5−g 3−
Q̄

2−q 6+
l̄

7−l ) 0.148841 − i 0.001185

r
[1],b
L (1+

q̄ 4+
Q 5−g 3−

Q̄
2−q 6+

l̄
7−l ) −1.00000 −3.334232 + i 0.000000 −6.462353 − i 0.674696

Atree(1+
q̄ 4+

Q 3−
Q̄

5+
g 2−q 6+

l̄
7−l ) −0.734834 + i 0.360895

r
[1],b
L (1+

q̄ 4+
Q 3−

Q̄
5+

g 2−q 6+
l̄

7−l ) −1.00000 −3.334232 − i 0.000000 −6.039221 − i 0.200173

Atree(1+
q̄ 4+

Q 3−
Q̄

5−g 2−q 6+
l̄

7−l ) −0.421057 − i 0.463392

r
[1],b
L (1+

q̄ 4+
Q 3−

Q̄
5−g 2−q 6+

l̄
7−l ) −1.00000 −3.334232 + i 0.000000 −6.632788 − i 0.178166

Atree(1+
q̄ 3−Q 4+

Q̄
2−q 5+

g 6+
l̄

7−l ) 1.347977 + i 0.593626

r
[1],b
L (1+

q̄ 3−Q 4+
Q̄

2−q 5+
g 6+

l̄
7−l ) −2.00000 −7.835662 − i 3.141593 −12.743438 − i 16.092839

Atree(1+
q̄ 3−Q 4+

Q̄
2−q 5−g 6+

l̄
7−l ) 0.570749 + i 0.316836

r
[1],b
L (1+

q̄ 3−Q 4+
Q̄

2−q 5−g 6+
l̄

7−l ) −2.00000 −7.835662 − i 3.141593 −14.463179 − i 14.071065

Table 9: The primitive tree-level four-quark amplitudes Atree and the ratio r
[1],b
L of the one-loop

class b primitive amplitude to the corresponding primitive tree-level amplitude for various helicities.
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Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 5+

g 4+
Q 3−

Q̄
2−q 6+

l̄
7−l ) −0.901749 − i 0.997556

r
[1],c
L (1+

q̄ 5+
g 4+

Q 3−
Q̄

2−q 6+
l̄

7−l ) −1.00000 −3.826559 − i 0.000000 −10.068901 − i 0.284089

Atree(1+
q̄ 5−g 4+

Q 3−
Q̄

2−q 6+
l̄

7−l ) −0.298533 + i 0.147741

r
[1],c
L (1+

q̄ 5−g 4+
Q 3−

Q̄
2−q 6+

l̄
7−l ) −1.00000 −3.826559 − i 0.000000 −9.118256 − i 0.316181

Atree(1+
q̄ 4+

Q 5−g 3−
Q̄

2−q 6+
l̄

7−l ) 0.288607 + i 0.043034

r
[1],c
L (1+

q̄ 4+
Q 5−g 3−

Q̄
2−q 6+

l̄
7−l ) −2.00000 −5.954375 − i 3.141593 −6.343258 − i 9.293058

Atree(1+
q̄ 4+

Q 5−g 3−
Q̄

2−q 6+
l̄

7−l ) 0.148841 − i 0.001185

r
[1],c
L (1+

q̄ 4+
Q 5−g 3−

Q̄
2−q 6+

l̄
7−l ) −2.00000 −5.954375 − i 3.141593 −8.567533 − i 11.440611

Atree(1+
q̄ 4+

Q 3−
Q̄

5+
g 2−q 6+

l̄
7−l ) −0.734834 + i 0.360895

r
[1],c
L (1+

q̄ 4+
Q 3−

Q̄
5+

g 2−q 6+
l̄

7−l ) −1.00000 −3.826559 + i 0.000000 −9.495931 + i 0.100657

Atree(1+
q̄ 4+

Q 3−
Q̄

5−g 2−q 6+
l̄

7−l ) −0.421057 − i 0.463392

r
[1],c
L (1+

q̄ 4+
Q 3−

Q̄
5−g 2−q 6+

l̄
7−l ) −1.00000 −3.826559 − i 0.000000 −9.538700 − i 0.299195

Atree(1+
q̄ 3−Q 4+

Q̄
2−q 5+

g 6+
l̄

7−l ) 1.347977 + i 0.593626

r
[1],c
L (1+

q̄ 3−Q 4+
Q̄

2−q 5+
g 6+

l̄
7−l ) −1.00000 −3.826559 + i 0.000000 −9.696279 + i 0.000000

Atree(1+
q̄ 3−Q 4+

Q̄
2−q 5−g 6+

l̄
7−l ) 0.570749 + i 0.316836

r
[1],c
L (1+

q̄ 3−Q 4+
Q̄

2−q 5−g 6+
l̄

7−l ) −1.00000 −3.826559 + i 0.000000 −9.696279 + i 0.000000

Table 10: The primitive tree-level four-quark amplitudes Atree and the ratio r
[1],c
L of the primitive

one-loop class c amplitude to the corresponding primitive tree-level amplitude for various helicities.
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Helicity 1/ǫ2 1/ǫ ǫ0

Atree(1+
q̄ 5+

g 4+
Q 3−

Q̄
2−q 6+

l̄
7−l ) −0.901749 − i 0.997556

r
[1/2]
L (1+

q̄ 5+
g 4+

Q 3−
Q̄

2−q 6+
l̄

7−l ) 0.00000 −0.666667 − i 0.000000 −2.527058 − i 0.104842

Atree(1+
q̄ 5−g 4+

Q 3−
Q̄

2−q 6+
l̄

7−l ) −0.298533 + i 0.147741

r
[1/2]
L (1+

q̄ 5−g 4+
Q 3−

Q̄
2−q 6+

l̄
7−l ) 0.00000 −0.666667 + i 0.000000 −2.366982 + i 0.089047

Atree(1+
q̄ 4+

Q 5+
g 3−

Q̄
2−q 6+

l̄
7−l ) 0.288607 + i 0.043034

r
[1/2]
L (1+

q̄ 4+
Q 5+

g 3−
Q̄

2−q 6+
l̄

7−l ) 0.00000 −0.66666 + i 0.000000 −2.656572 + i 0.000000

Atree(1+
q̄ 4+

Q 5−g 3−
Q̄

2−q 6+
l̄

7−l ) 0.148841 − i 0.001185

r
[1/2]
L (1+

q̄ 4+
Q 5−g 3−

Q̄
2−q 6+

l̄
7−l ) 0.00000 −0.666667 + i 0.000000 −2.656572 + i 0.000000

Atree(1+
q̄ 4+

Q 3−
Q̄

5+
g 2−q 6+

l̄
7−l ) −0.734834 + i 0.360895

r
[1/2]
L (1+

q̄ 4+
Q 3−

Q̄
5+

g 2−q 6+
l̄

7−l ) 0.00000 −0.666667 + i 0.000000 −2.887087 − i 0.164880

Atree(1+
q̄ 4+

Q 3−
Q̄

5−g 2−q 6+
l̄

7−l ) −0.421057 − i 0.463392

r
[1/2]
L (1+

q̄ 4+
Q 3−

Q̄
5−g 2−q 6+

l̄
7−l ) 0.00000 −0.666667 + i 0.000000 −2.749917 + i 0.137009

Atree(1+
q̄ 4+

Q 3−
Q̄

2−q 5+
g 6+

l̄
7−l ) 1.347977 + i 0.593626

r
[1/2]
L (1+

q̄ 4+
Q 3−

Q̄
2−q 5+

g 6+
l̄

7−l ) 0.00000 −0.666667 + i 0.000000 −2.662151 + i 0.000000

Atree(1+
q̄ 4+

Q 3−
Q̄

2−q 5−g 6+
l̄

7−l ) 0.570749 + i 0.316836

r
[1/2]
L (1+

q̄ 4+
Q 3−

Q̄
2−q 5−g 6+

l̄
7−l ) 0.00000 −0.666667 + i 0.000000 −2.662151 + i 0.000000

Table 11: The primitive tree-level four-fermion amplitude Atree and the ratio r
[1/2]
L of the primitive

one-loop amplitude to primitive tree-level amplitude for various helicities.
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